Fibronectin expression is upregulated by PI-3K/Akt activation in tamoxifen-resistant breast cancer cells

نویسندگان

  • Daeun You
  • Seung Pil Jung
  • Yisun Jeong
  • Soo Youn Bae
  • Jeong Eon Lee
  • Sangmin Kim
چکیده

Fibronectin (FN) plays important roles in the EMT in a variety of cancer cell types. However, the mechanism by which FN expression is regulated in tamoxifen-resistant (TamR) breast cancer cells has not yet been fully elucidated. Aberrant FN expression was associated with poor prognosis in patients with luminal type A breast cancer. In addition, FN was upregulated in TamR cells. To investigate the mechanism by which FN expression is regulated, we assessed the levels of phosphorylated Akt, JNK, and STAT3 and found that they were all increased in TamR cells. Induction of FN expression was dampened by LY294002 or AKT IV in TamR cells. Furthermore, FN expression was increased by constitutively active (CA)-Akt overexpression in tamoxifen-sensitive MCF7 (TamS) cells and colony formation of TamR cells was blocked by AKT IV treatment. Taken together, these results demonstrate that FN expression is upregulated through the PI-3K/Akt pathway in tamoxifen-resistant breast cancer cells. [BMB Reports 2017; 50(12): 615-620].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

Targeting the phosphatidylinositol 3-kinase/Akt pathway for enhancing breast cancer cells to radiotherapy.

The phosphatidylinositol 3-kinase (PI-3K)/Akt pathway, regulated by its upstream growth factor receptor tyrosine kinases, plays a critical role in promoting cell proliferation and inhibiting cell death. The aim of this study was to determine whether the PI-3K/Akt activity contributes to the resistance of human breast cancer cells to ionizing radiation and whether inhibition of the PI-3K/Akt pat...

متن کامل

Long Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway

BACKGROUND Long non-coding RNA (lncRNA) UCA1 is an oncogene in breast cancer. The purpose of this study was to investigate the role of UCA1 in tamoxifen resistance of estrogen receptor positive breast cancer cells. MATERIAL AND METHODS Tamoxifen sensitive MCF-7 cells were transfected for UCA1 overexpression, while tamoxifen resistant LCC2 and LCC9 cells were transfected with UCA siRNA for UCA1 ...

متن کامل

MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells.

Although tamoxifen reduces disease progression, tamoxifen resistance occurs during the course of estrogen receptor-positive [ER+] breast cancer treatment. In the present study, we investigated the possibility that interleukin-8 (IL-8) is a prognostic marker for tamoxifen resistance and aimed to clarify the regulation of IL-8 expression in tamoxifen-resistant cells. Clinically, IL-8 expression i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017